利德华福5600kW/10kV无速度 传感器矢量控制高压变频器冷却 系统故障分析及处理方法

Lidehuafu Vector Control High Voltage Converter without Speed Sensor at 5600kW/10kV

(北京利德华福电气技术有限公司) 刘军祥 吕泽玉

摘要:某钢铁集团公司烧结分厂为实现节能降耗,降低生产成本,对180m2烧结生产线的主烧结风机进行了变频节能改造。该设备额定功率为5600kW,配备了同等功率的HARSVERT-VA10/410 无速度传感器矢量控制高压变频器一台。为确保高压变频器具有良好的运行环境,避免因温度过高而导致保护停机,利德华福同时为该高压变频器配备了一套独立的空一水冷却系统,用于解决设备散热问题。空一水冷却系统的运行效果未能达到良好的稳定环境温度的目的,通过现场实际分析,对冷却系统进行了改进。

关键词: 烧结风机 5600kW高压变频器,设备散热,空水冷系统 Abstract: Variable frequency energy saving improvement to the master sintering fan in sintering production line with 180m2 is made for the purpose of energy saving, consumption reduction and production cost cut in the sintering branch of an iron and steel group. The rated power of the equipment is 5600kW fitted with a vector control high voltage converter without speed sensor HARSVERT-VA10/410 with the same power. Meanwhile, Lidehuafu provides a separate air-water cooling system for the high voltage converter to ensure a good operation environment, avoid shutdown protection due to overheating and settle radiating issue. But the operation performance of the airwater cooling system misses the purpose of having a stable ambient temperature. The cooling system is improved after practical site analysis.

Key Words: Sintering fan; High voltage converter 5600kW; Equipment radiating; Air-water cooling system

存在的问题

某钢铁集团公司烧结分厂为实现节能降耗,降低生产成本。经研究论证,对180m²烧结生产线的主烧结风机进行了变频节能改造。该设备额定功率为5600kW,配备了同等功率的HARSVERT-VA10/410无速度传感器矢量控制高压变频器一台。

为确保高压变频器具有良好的运行环境,避免因温度过 高而导致保护停机,利德华福同时为该高压变频器配备了一套 独立的空一水冷却系统,用于解决设备散热问题。

设备安装投运后,出现高压变频器负荷率在80%,采用 开放式风道冷却,室外环境温度小于28℃时,设备运行温度能 够维持在变压器76℃、功率柜33℃以下。而当采用空一水冷却 系统密闭式循环时,高压变频器变压器柜温度大于113℃、功 率柜38℃。从现象来看:空一水冷却系统的运行效果未能达到 良好的稳定环境温度的目的。鉴于此,我们对冷却系统进行了 现场实地调查和系统原因分析。空一水冷却系统结构原理图 如图1所示。

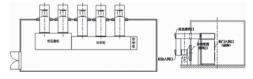


图1 空-水冷却系统结构原理图

2 冷却系统工况分析

2. 1 设备选型分析

该项目所配高压变频器的额定功率为5600kW,其效率为96%,4%的损失主要以热量形式散失到环境当中,为保证设

备运行安全,设备采用了技术先进、应用成熟、稳定可靠的空一水冷却系统。该系统具有冷却功率大、单位热交换效率 高、房间密闭、粉尘进入少、运营成本低、维护量低等特点。

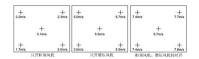
首先,对冷却装置的功率选型和配比进行了核实。按照高压变频器的最大散热功率为5600 kW×4%=224kW。根据设备所处地域气候温度以及运行工况,冷却装置的设计裕度为1.13。即:冷却装置的热交换功率不小于253.1kW,实际设计安装冷却功率为255kW。其中功率柜配备三台45kW冷却装置,变压器柜配备两台60kW冷却装置。冷却系统设计总冷却风量100000m³/h,其中3台20000m³/h的增压风机与功率柜配套使用。功率柜自身的有效排风量为8台4300m³/h的风机总排量34400m³/h,实际冷却系统的配备大于功率柜需求通风量,满足运行要求。变压器柜自身的有效排风量为5台4300m³/h的风机总排量21500m³/h,实际冷却系统的配备大于变压柜需求通风量,满足运行要求。从上述数据可以看出:在冷却系统的增压风机部分的设计中充分考虑了系统的有效性和安全性,当柜顶或增压风机中出现单台设备故障时,仍可以保证系统具有足够的通风效能维持系统的稳定。

因此,冷却系统设备选型和配比正常,不存在问题。

2. 2 风路系统分析

因为分析系统出现冷却效果问题的原因,在现场首先对风路循环部分进行了实际测量和数据分析。从而验证风机的实际风量、风压等运行指标是否符合要求。利用风压风速测量装置对现场功率柜及变压器柜的柜门入口、应急风道排风口、冷却装置室内排风口位置的风速分别进行了多点测量。通过实测数据对开放式通风冷却和密闭式循环冷却的循环风量情况进行比对分析。

(1)当只打开高压变频器柜顶风机时,对功率柜门和变压器柜门、应急排风口、冷却装置排风口的风速进行了多点测量平均数据如下:


风速 测点 方式	功率柜门入风 (m/s)	变压器柜门入风 (m/s)	应急排风口 (m/s)	冷却装置排风口 (m/s)
开放式通风冷却	1. 40	1.42	7. 0	
密闭式循环冷却	1.31	1. 33		2. 26

从数据中显示:单独运行柜顶风机采用密闭式循环冷却方式时,循环风道和空一水冷却装置增加了风路阻力,降低了设备有效通风量。在开放式冷却方式运行时,柜体入风口风速达到1.40以上即可满足变频自身的通风冷却需求。

(2)当只打开冷却系统增压风机采用密闭式循环冷却时,功率柜门和变压器柜门、冷却装置排风口的风速测试数据如下:

· · ·					
	风速 测点 方式	功率柜门 (m/s)	变压器柜门 (m/s)	应急排风口 (m/s)	冷却装置排风口 (m/s)
Γ	密闭式循环冷却	1, 63	1,60		4. 94

从数据中显示:单独使用密闭式循环冷却,其有效通风量和风速能够达到柜体自身冷却风量的要求。

(3) 当高压变频器柜顶风机和冷却系统增压风机同时运行时,功率柜门和变压器柜门、冷却装置排风口的风速测试数据如下:

风速 测点	功率柜门	变压器柜门	应急排风口	冷却装置排风口
方式	(m/s)	(m/s)	(m/s)	(m/s)
密闭式循环冷却	2.07	2.10		

从数据中显示:在高压变频器柜顶风机和密闭式冷却系统风机全部打开,处于正常运行时,系统的冷却通风量完全满足高压变频器的运行要求。

根据伯努利方程得出的风速—风压关系,风的动压 WP=0.5•ro•V2 (其中WP为风压[kN/m²],ro为空气密度[kg/m³],V为风速[m/s]);流量Q=S \times V(其中Q为风cf量[m³/s],S为面积[m²],V为风速[m/s])。冷却系统采用密闭式循环冷却的有效通风量和风压指标完全能够达到柜体自身冷却风量的要求。

由此可见,在风压、风量相当时,高压变频器自身运行温度不同,与高压变频器吸入的冷却空气温度有关。如果吸入的循环空气温度过高也不能达到预期冷却效果。因此,考虑冷却系统的热交换能力没有能够达到预期设计要求,把高压变频器热量有效带走,而是排回室内的循环风温度偏高所致。

2. 3 水路分析

经过对现场冷却系统水路系统的实际调查,目前现场各参数技术条件与设计要求值之间的对比见下表:

序号	测试参数名称	设计要求值	实际测量值	判断结果
1	进水温度	≤33°C	26℃	符合要求
2	进水工作压力	≥0.25MPa	0.05MPa	严重偏小
3	回水压力	≤0.12MPa	0.02MPa	符合要求
4	给水母管管径	≥Φ133	Ф89	严重偏小

由上表测得的数据可知:空一水冷却系统在现场的实际运行指标并未能达到预期使用要求。空一水冷却装置是通过冷却水流过交换管内部与热风之间实现热传递,达到换热目的。空一水冷却装置热交换量主要依靠流速和水量实现热交换效率和热交换功率,当流速降低时,冷却水与热空气的交换效率就会下降;而水量降低则使得空一水冷却装置不能达到预期的热交换功率。

在项目设计时,要求进水压力0.25MPa,回水压力0.1MPa,水温33℃,冷却水总流量68t/h。按照无缝管的阻力系数0.2计算,至少需要 ф 133管道。而现场实际采用的管道截面积只有设计要求的44.4%,远远低于使用需求。管径小、压力低是导致空水冷却装置没有达到额定冷却功率的根本原因,致使房间内热量累积引起高压变频器在密闭时冷却条件下反而比开放式冷却的效果差。